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Abstract. Automated myocardial segmentation from late gadolinium
enhancement magnetic resonance images (LGE-MRI) is a critical step
in the diagnosis of cardiac pathologies such as ischemia and myocar-
dial infarction. This paper proposes a deep learning framework for im-
proved myocardial diseases segmentation. In the first step we propose
an encoder-decoder segmentation network that generates myocardium
and cavity segmentations from the whole volume then followed by a
3D U-Net based on Shape prior identifies myocardial infarction and
MVO segmentations from the encoder-decoder prediction. The proposed
network, achieves good segmentation performance, as computed by av-
erage dice ratio over all predicted substructures, respectively : 'My-
ocardium': 96.29%, 'Infarctus': 76.56%, 'No-reflow': 93.12% on our vali-
dation EMIDEC dataset consisting of LGE-MRI volumes of 16 patients
extracted from the training data.
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1 Introduction

According to the World Health Organization (WHO) [1], Myocardial Infarction
(MI) is one of the main cause of death globally. It essentially develops when
oxygen-rich blood flow to the myocardium is suddenly interrupted [2]. However,
when revascularization fails, permanent microvascular obstruction phenomenon
(MVO, also known as No-reflow) can occur in scar regions. Efficient quantifica-
tion of infarcts and MVO is essential for diagnosis and therapy planning.

Myocardial Scar Segmentation aims to accurately recognizing myocardial
scars areas. Previous prevalent scar segmentation works were often performed
using thresholding-based methods, such as the n-standard deviations (n-SD) [3],
the full-width at half-maximum (FWHM) [4] and the region growing [5], which
are responsive to the regional intensity variation. However, these algorithms fre-
quently require a prior knowledge of the expert myocardial location determined
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by its epicardial and endocardial annotations, to delineate the areas of interest
for segmentation [6].

Manual MI delineation is time-consuming and prone to inter and intra-
observer variations. Hence, there is a need for accurate and automatic segmen-
tation models to ease the work load of medical experts. Deep learning-based
methods for medical image segmentation play an important role in cardiac func-
tion analysis and follow up of different diseases due to their feature extraction
effectiveness. Deep architectural betterment has been a target of several sci-
entists for diverse works. U-Net based networks [7] have often been used. 2D
U-Net network demonstrated impressive performances for valuable segmenta-
tion of myocardium structure on the ACDC 2018 challenge [8]. Fahmy et al. [9],
used the U-Net based method to delineate the myocardium and the scars from
LGE images obtained from subjects with hypertrophic cardiomyopathy (HCM).
Fatemeh Zabihollahy et al. proposed 2D U-Net for powerful segmentation of
myocardial regions from 3D LGE-MRI [10]. Applying 3D Fully Convolutional
Networks (FCN) which integrate 3D context across different slices improve es-
timating disease diagnosis [11]. Interestingly, frequent 3D FCN works achieve
promising performances in segmenting cardiovascular volumes with robust 3D
consistency [12,13]. Xu et al. [14] provided an RNN method for infarction as-
sessment which exploits motion patterns to accurately segment MI region from
cine MR image sequences.

2 Material and Method

2.1 Datasets and Pre-processing

The dataset [15] is supplied by the EMIDEC segmentation challenge and consists
of 150 volumes. The ground truth annotation includes five labels: background (0),
cavity(1), normal myocardium (2), myocardial infarction (3) and no-reflow (4).
The labeled scans are split into training (80 patients), validation (20 patients)
and test (50 patients) subsets. We first cropped original volumes to a normalized
set. Supplementary empty slices are added to maintain size fixed, resulting in
Nifti images of shape 96× 96× 16 for all present subjects.

2.2 3D Proposed Model

Given V = {V1, V2, ... , Vn} a set of 3D LGE-MRI input volumes, our approach
is trained end-to-end on each of them, and learns to predict 3D segmentation for
the whole volume. To reach this goal, the proposed method consists of two major
steps: we train the first proposed network, to learn the myocardium regions.
Then, the extracted attributes from the 3D pre-trained Autoencoder model are
transferred to 3D U-Net to segment myocardial diseases and increase the model
performance. Details of each part are elucidated in the following paragraphs.
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3D Myocardium Segmentation The proposed model is deigned based on the
concept of encoder-decoder with skip connections. In encoding or analysis path,
the proposed Inception-Res block has been introduced with convolutional block
attention module (CBAM) and in decoding or synthesis path, the proposed EDP
(expansion, depthwise and projection layer block) module has been presented af-
ter 2D upsampling layer. The attention module has been used in skip connection
that caters information at every block from encoder to decoder side. The num-
ber of channels is doubled at each Inception-Res block and input size of feature
maps are reduced by half using depthwise convolution layer in analysis path. We
have used progressive feature extraction approach at encoder side, the number of
Inception-Res block are increased progressively at each stage of the decoder side.
The first encoder block used one Inception-Res block, similarly, second, third,
and fourth used 2,3,4 number of Inception-Res block respectively. Similarly, in
synthesis path, the size of feature maps increases after 2D up-sampling layer and
original size of training images will return at output in final layer.

We proposed a modified inception module in encoder side of our proposed
model. In inception residual block, the features maps are aggregated from var-
ious branches using kernels of different sizes that make the network wider and
having the capacity to learn more features. The residual connections provide
easy learning with reference to the input feature maps, instead of learning an
unreferenced function [16]. The proposed model is shown in Fig. 1.
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Fig. 1: Proposed model based on Inception-ResNet and EDP blocks.
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In the decoder side, we have proposed EDP (expansion, depthwise and pro-
jection layer block). Similarly, as in encoder, the expansion layer increases the
number of feature maps and in projection layer decreases the feature maps with
some regularization layer such as batch normalization and activation. The com-
plete layer structure for the decoder is shown in Fig. 2b.

The Fig. 2a shows the proposed modified Inception-Res block. As compared
to the original Inception-Res architecture, batch normalization (BN) layer has
been introduced after each convolutional layer except for bottleneck layers and
as a second modification we are using 1 × 1 and 3 × 3 kernel, and also intro-
duced 5× 5 kernel branch as inspired by the DeepLab [17]. Batch normalization
layer produced smooth training and can avoid gradient vanishing while retaining
convolutional layers. The feature maps are aggregated by convolving with three
kernels, namely 1× 1, 3× 3 and 5× 5. The 3× 3 and 5× 5 kernels are further
reduced into 1× 3, 3× 1, 1× 5 and 5× 1 to minimize the number of parameters.
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(a) Proposed Inception-ResNet Block.
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Fig. 2: Proposed Inception-ResNet Block and EDP (expansion, depth-wise and
projection) Decoder Block.

Assuming that xl is the output of the lth layer, c(n×n)(.) is a n × n kernel
convolutional layer, cb(.) represents the batch-normalization layer and 1×1 Conv
denotes the bottleneck layer; the output of each Inception-Res block module from
the decoder path is given in Eq. 1.
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xl+1 = c1×1(c1×1(xl).cb(c3×3(c1×1(xl))).cb(c3×3(cb(c3×3(c1×1(xl))))).cb(c5×5

(cb(c5×5(c1×1(xl))))) + xl
(1)

Ye Huang et al. [18] presented a kernel-sharing atrous convolutional (KSAC)
layer in atrous spatial pyramid pooling (ASPP) module. The 3×3 kernel is shared
with atrous convolutional layers with different dilation rates. In this paper, we
have extended KSAC based ASPP module and combined different features ex-
tracted from the down-sampling path with the various scale features (five scales)
in the KSAC based ASPP shown in Fig. 3. The proposed KSAC based ASPP
(later noted KASPP) module captures features from low level as well as features
from different down-sampled layers to obtain texture and position information
from encoder side feature maps.
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Fig. 3: The proposed K-atrous spatial pyramid pooling layer module.

3D Myocardial diseases Segmentation Experimental results proved that
extracting volume patches of size 12× 12× 12 pixels3 from the training dataset
attains the best results for the segmentation of diseased myocardial tissues.

The U-Net architecture is U-shaped model which firstly aims to catch more
high-level features through an ensemble of convolutional and max pooling layers.
Then the feature maps are up-sampled to recover the segmentation maps at the
original spatial dimension. Therefore, the concatenation of feature maps of same
resolution in the decoder path produces a promising medical segmentation.

As shown in Fig.4, our 3D network incorporates 3D U-Net with a Super
Resolution (SR) module to constrain prior knowledge shape. 3D Autoencoder
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focuses on how to accurately encode and reduce the original volume that can be
rebuilt from the encoded representation. Hence a pre-trained 3D Autoencoder, is
effective to regularize the generated result into a realistic shape. Pre-trained 3D
Autoencoder is bound to the 3D U-Net and takes the segmented scan as input.
A regularization term is established for restraining the segmentation result. The
final loss function is defined in Eq. 2:
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Fig. 4: Schematic representation of our approach for damaged myocardial seg-
mentation.

LFinal = LSeg + λSR × LSR (2)

(Where LSeg is the cross entropy loss function, λSR is the regularization term
and LSR is the L2 loss function which is determined from Frobenius norm Eq.
3. We choose λSR = 10−2.)

LSR =

n∑
i=1

||RPi −RGi||2F (3)

(Where n is the number of training volumes,RGi represents the reconstructed
ground truth, RPi denotes the reconstructed segmentation results and ||.||F in-
dicates the Frobenius norm of an m× n matrix.)

3 Results and Discussion

Each voxel was better determined through majority voting and morphologi-
cal mathematics (erosion and dilatation) of class tissues acquired on patches.
We used Dice Coefficient (DSC), Hausdorff Distance (HD), Volume Difference
(AVD) and Absolute Volume Difference Rate according to volume of myocardium
(AVDR) as evaluation metrics for all myocardial regions.
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Table 1: Quantitative study for myocardial segmentation. Best values are repre-
sented in bold font.

Method Metrics
Structures

Myocardium Infarctus No-reflow

3D U-Net

DSC % 95.71 74.98 68.61
AVD mm3 295.50 474.12 55.75
HD mm 4.57 - -
AVDR % - 9.06 0.97

3D U-Net + 3D Autoencoder +
Post-processing

DSC % 96.29 76.56 93.12
AVD mm3 270.00 234.1 26.69
HD mm 3.77 - -
AVDR % - 4.92 0.59

We report in Table 1 the summary of comparative evaluation on validation
set (including 16 whole volumes), showing the pertinence of 3D Autoencoder
and Post-processing. Majority voting technique and morphological mathematics
Post-processing are applied to increase sensitivity for quantifying scarred areas.
Our proposed method successfully outperforms the baseline 3D U-Net model
(average dice 88.66 % vs. 79.77 %).

To show the impact of 3D Autoencoder and Post-processing, Fig.5, displays
exemplary visualization of the segmentation myocardial structures on two val-
idation subjects. Gold standard and segmented volumes attained using our 3D
network and 3D U-Net are presented in the matching row. These results demon-
strate the performance of our developed framework in segmenting different struc-
tures of interest by aiming attention at relevant regions.

4 Conclusion

Automated myocardial tissue segmentation is paramount for diagnosis of car-
diac diseases. In this paper, we present an end-to-end deep learning network. A
modified proposed atrous convolutional layers, EDP and Inception-Res blocks
are integrated to catch more high-level features and retain more finer and coarser
information. The proposed myocardial segmentation adopts Pre-trained 3D Au-
toencoder with 3D U-Net, improving the segmentation efficiency. Our experi-
mental results prove that this approach provided the best accuracy for myocar-
dial segmentation and can find its pertinence in different medical imaging tasks
based on deep learning.
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