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Abstract. Every segmentation task is uncertain due to image resolu-
tion, artefacts, annotation protocol etc. Propagating those uncertainties
in a segmentation pipeline can improve the segmentation. This article
aims to assess if segmentation can benefit from uncertainty of an aux-
illary unsupervised task - the reconstruction of the input image. The
method was applied to segmentation of myocardial infarction areas on
cardiac magnetic resonance images.

1 Dataset

The presented methods were developed on the hundred Delayed Enhancement
Magnetic Resonance (DEMR) exams of the segmentation dataset of the EMIDEC
challenge [3]. From this data only the DEMR exams and the voxel-wise anno-
tations of the five classes (background, cavity, normal myocardium, myocardial
infarction and no-reflow) were used to tune the methods.

2 Methods

2.1 Method overview

Two methods, described in Fig. 1, are proposed for this challenge :

– Baseline segmentation : First a region of interest (ROI) U-net selects the
ROI, a tile of shape [nx, ny, nz] centered on the four non-background classes.
Then, a segmentation U-net segments the five classes of interest from the
ROI. The selection of the ROI focuses the segmentation U-net on the non-
background classes, which are the classes of interest.

∗Equally contributed
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– Uncertainty-based segmentation : The ROI is determined as in the base-
line segmentation, using the ROI Unet. Then a probabilistic Auto-Encoder
generates an uncertainty map of the reconstruction of the ROI. Finally, an
uncertainty-based U-net segments the ROI from the uncertainty map and
the ROI. This method is inspired from the work of Metha et al. [4], which
demonstrates that cascading uncertainty in inference tasks can lead to im-
provement of downstream tasks.

Fig. 1: Method overview

2.2 U-net

The different U-nets [6], described in this article, have nin input channels, nout
output channels and depends on the number of features nf as in Fig. 2. Note
that due to the low resolution of the DEMR images in the z-axis compared to
the other directions, the max-pooling and up-sampling are 2D instead of 3D [1].

Fig. 2: U-Net structure
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Fig. 3: Probabilistic Auto-Encoder structure

2.3 Probabilistic Auto-Encoder

The probabilistic Auto-Encoder, described in Fig. 3, uses Monte-Carlo dropout
with a dropout rate pd to compute the uncertainty map corresponding to ROI
reconstruction [2]. Note that, similarly to the U-net, the up-sampling and max-
pooling are 2D. To obtain several estimates of the reconstruction at test time,
we sample T = 25 sets of parameters (θ1, ..., θT ). From those T set of parame-
ters, T outputs, (fθ1(xt), ..., fθT (xt)), represent a sample of the region of interest
reconstruction distribution q(x̂t|xt). From this sample, one can derive the vari-
ance of the output probabilities at voxel level, which is referred later on as the
uncertainty map, as

Var(q(x̂tj |xt)) =
1

T

T∑
t=1

fθtj (xt)2 − E((q(x̂tj |xt))2 (1)

where fθ is the auto-encoder with parameters θ, q(x̂tj |x) is the reconstructed
distribution of the voxel j.

2.4 Data-augmentation

On the fly, three types of data-augmentation are performed in the following
order: rotations, elastic deformations and flips. The rotation applied along the
z-axis depends on an angle θ randomly sampled from U(θmin, θmax). The random
elastic deformation depends on a displacement grid of shape [gx, gy, gz] generated
via the module elasticdeform‡. The values of the component of each displacement
vector vx, vy and vz are respectively sampled from the distribution U(−dx, dx),
U(−dy, dy), and U(−dz, dz). Finally random flips along x and y axis are applied
with a probability p. After data-augmentation, the resulting image intensities
are linearly rescaled such that the minimum and the maximum are set to 0 and
1 respectively.

‡https://github.com/gvtulder/elasticdeform
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Table 1: Implementation details

Parameters ROI U-Net Auto-Encoder Baseline U-Net Uncertainty-based U-Net

nin 1 1 1 2
nout 1 1 5 5
nf 8 8 16 16
batch size 5 5 5 5
loss Dice [5] L1 Averaged dice [5] Averaged dice [5]
optimizer Adadelta [7] Adadelta [7] Adadelta [7] Adadelta [7]
[nx, ny, nz] [104, 176, 8] [64, 64, 2] [64, 64, 8] [64, 64, 8]
[gx, gy, gz] [20, 20, 3]
[dx, dy, dz] [1, 1, 0.1]
[θmin, θmax] [-10, 10]
p 0.5 0.5 0.5 0.5
pd 0.1
pc 0.5 0.5

2.5 ROI U-Net

This U-net is trained to segment a binary mask of the Myocardial areas. Then
the center of mass of the four largest connected components of the prediction
determine the predicted center of the ROI. All input DEMR images were resized
to the network input size [nx, ny, nz].

2.6 Segmentation U-net

This U-net is trained on tiles of shape [nx, ny, nz] containing the segmentation.
At train time, a proportion pc of the training sample had the ground truth
segmentation centered.

2.7 Uncertainty map based U-net

This network is comparable to the segmentation U-net but takes a tile of shape
[nx, ny, nz] of the input image and of the uncertainty map as input.

2.8 Parameters

The parameters and the implementation details of the networks are described
in Tab. 1. Note that baseline U-net uses elastic deformations where uncertainty-
based U-net did not.

2.9 Ensemble

The training dataset is randomly split in four subsets. Then, for all networks,
four models are trained, each using three of the subsets as training set and the
remaining subset as validation set. Segmentations on the test images are then
obtained as the voxel-wise mean of the outputs of these four models.
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Table 2: Performance of the baseline and the uncertainty-based method. (The best
observed results per metrics are in bold)

Baseline method Uncertainty-based method

Myocardium
Dice index (%) 75.74 68.86
Haussdorf distance (mm) 25.44 35.15
Volume difference (mm3) 17108.13 19646.13

Infarction
Dice index (%) 30.79 21.63
Volume difference (mm3) 4868.56 7476.56
Volume difference ratio according 3.64 6.09
to volume of myocardium (%)

No-reflow
Dice index (%) 60.52 60.00
Volume difference (mm3) 867.86 944.92
Volume difference ratio according 0.52 0.57
to volume of myocardium (%)

3 Results

Challenge organizers evaluated both the uncertainty-based and the baseline
method on an independent test set of fifty patients. The evaluated metrics vary
from class to class: Dice index, Haussdorf distance and volume difference assessed
the quality of the segmentation of myocardium; Dice index, volume difference
and volume difference ratio according to volume of myocardium assessed the
quality of the segmentation of infarction and no-reflow areas (table 2). Both
the uncertainty-based and the baseline method segment the myocardium better
than the no-reflow areas and the no-reflow areas better than infarction areas. For
every metric, the baseline method out-performed the uncertainty-based method.

4 Discussion

We developed and compared two methods to segment myocardial infarction areas
using deep learning. At the time of writing this article, the results cannot be
compared to other methods as the results of the EMIDEC challenge are not
released yet.

Two elements explain partly the poor performances of the uncertainty-based
method compared to the baseline method. First, the comparison is not entirely
fair as the implementation of the data augmentation of the uncertainty-based
method did not include elastic deformations (Table 1). Second, fine-tuning the
probabilistic auto-encoder properly would have required more time. A more in
depth analysis would be required to draw definitive conclusion on the comparison
of both methods.
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