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Abstract. DE-MRI provides a reliable and accurate imaging technique
for the assessment of pathological alterations in myocardial tissue. The
clinically applied thresholding techniques enable the assessment of the
amount of diseased tissue. To also assess distribution patterns, transmu-
rality and micro-vascular obstruction, more accurate segmentation meth-
ods are needed. We compare a hybrid CNN and mixture model approach
with a two single-stage U-net segmentation: one based on the EMIDEC
challenge data set, one with additional training data and could achieve
DICE coefficients of 84.8%, 84.08%, and 82.95%, respectively. We hope
to further improve the promising results through an extension of the
training set.
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1 Introduction

The analysis of delayed-enhancement magnetic resonance imaging provides an
effective technique to analyze the state of the myocardial tissue after myocardial
infarction. The analysis helps to select treatment, i.e., can give insight if a revas-
cularization therapy will be successful. An automated, standardized way of seg-
menting the different areas such as the myocardium, the infarcted tissue, and the
permanent microvascular obstruction will improve the diagnosis and therapeu-
tic decision. Over the last decades, several segmentation approaches have been
developed. However, the analysis of these DE-MRI is still a challenging task due
to bad image contrast, image- and motion artifacts. In this challenge, we tested
two different approaches: one traditional mixture-model based approach and one
based on CNN for the differentiation between normal myocardium, regions with
late enhancement, and no-reflow areas where neither wash-in nor wash-out of
contrast agent can be observed because of microvascular obstructions.
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2 Material and Methods

2.1 Image Data

The image data for the EMIDEC challenge [6] consists of 150 cases, 100 dis-
eased patients and 50 normal cases. The data set is split into a training set
with 100 cases and a testing set with 50 cases. The training set as well as the
testing set contains 1/3 normal and 2/3 of pathological cases, which roughly cor-
responds to real life observations in clinical settings. The data was acquired on
Siemens MRI scanners on 1.5T (Area) and 3T (Skyra); the in-plane resolution
was 1.25x 1.25mm2 and 2x 2mm2, a slice thickness of 8mm and a distance
between slices of 8 to 13mm. In a post-processing step the image slices were
realigned to prevent any drawbacks resulting from breathing motions.

Furthermore, the EMIDEC challenge organizers provided ground-truth seg-
mentations for the training set containing labels for the cavity, myocardium,
myocardial infarction, and no-reflow areas. Figure 1 illustrates an example
of a normal case and two cases with myocardial infarction and no-reflow areas.

Fig. 1: Left: an MRI acquisition of a patient without myocardial infarction.
Center: a pathological case with myocardial infarction. Right: a pathological
case with myocardial infarction and no-reflow regions.

2.2 Methods

Background There have been many attempts to provide segmentation meth-
ods for a reproducible quantitative assessment of myocardial fibrosis based on
late gadolinium enhancement imaging. The overview paper from the STACOM
challenge by Karim et al. presented many conventional voxel classification ap-
proaches based on intensity distributions [5]. Most approaches are organized in
two steps: first the myocardium is segmented to reduce the problem and pro-
vide anatomical context information such as the relative postion of a voxel with
regard to the endocardial border of the myocardium, then the myocardium is an-
alyzed. More recent approaches make use of modern machine learning techniques
such as CNNs [11]. Because of the lack of large training cohorts most successful
approaches still use a multi-step approach, which combines different types of seg-
mentation and classification methods. Zabihollaly et al. suggest the combination
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of a myocardium segmentation U-net with an ensuing CNN-based classification
of the myocardial voxels [12]. The approach by de la Rosa et al. applies a CNN
for the preselection of image slices to analyze with regard to myocardial patholo-
gies [9]. The reported DICE-values of these multi-step approaches are 88% and
77% respectively. The single-stage-CNN-approaches approaches obviously de-
pend more on the training set. The reported DICE coefficients in published
approaches are minimum 48% [2] and can be improved through additional data
sets generated with Generative Adversarial Neural Networks (GAN) [7].

CNN segmentation Over the last years, CNN based segmentation approaches
often outperformed traditional approaches in medical image processing chal-
lenges. In former work[10], we already applied a 2D 4-layer u-net [8] successfully
to segment the left and right ventricle on cine MRI. In this work, we tried to use
that prior knowledge for the challenge.

We chose the same architecture as in our previous work and tested if transfer
learning can improve the robustness and quality of the results. We used 100
additional DE-MRI data sets for which only blood-pool and myocardial labels
were provided. Based on these data sets, we trained two CNNs. One u-net that
was only trained with the challenge data. The other u-net was first trained on
the additional DE-MRI data sets. As these images only contain labels for the
left ventricular cavity and myocardium, we could not directly train our model on
both data sets together, or start the training on the additional data and resume
it on the challenge data directly. We had to reset the last layer and restart the
training in order to incorporate the additional labels.

For training of both experiments, we chose a learning rate of 0.005, categorical
cross-entropy as loss function, and used drop-out and batch normalization.

Hybrid Mixture Model-based segmentation: MM-RG Our mixture-model
approach is based on [3] but is adapted to the current data, definition of the
micro-vascular obstructions, and the definition of thresholds to generate binary
masks. The approach uses the intensity distribution in the myocardium and
the expected location and size of myocardial infarcts. In the first step, the my-
ocardium has to be delineated. We used the same 4-layer U-net architecture for
this task. As we only have to differentiate background, cavity and myocardium
started with a u-net trained on cine MRI from the ACDC challenge data set [1]
and in-house cine MRI data sets. In a second step, we used the additional DE-
MRI data as well as the challenge data and resumed the training with that data.
For the challenge data, we replaced the labels for infarction and no-reflow areas
by the label for the myocardium. In a second step, we perform a mixture model
fit of an expected distribution model to the myocardial histogram. For MRI
data, a mixture of Rice and a Gaussian distribution or a mixture of Rayleigh
and Gaussian can be assumed. During the training phase, we achieved better
results using a mixture of Rayleigh and Gaussian. As a third step, the infarcted
tissue is segmented, incorporating expected position and spatial connectivity. In
[4], a watershed segmentation based on automatically extracted seed points in
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Metric MM-RG Transfer-learning EMIDEC

Dice myocardium (%) 92.07 82.43 81.00
Volume difference myocardium (mm3) 3863.89 11766.66 13655.55
Hausdorff myocardium (mm) 9.30 15.75 16.72
Dice MI (%) 57.25 34.09 36.08
Volume difference MI (mm3) 6048.54 5994.9 8980.5
MI volume difference ratio (%) 4.99 4.94 7.07
Dice no-reflow (%) 39.29 40.26 54.15
Volume difference no-reflow (mm3) 1301.80 1520 1501.73
No-reflow volume difference ratio (%) 0.97 1.11 1.08

Table 1: Internal quantitative evaluation on 5-fold cross-validation

high-intensity voxels, located at the inner part of the myocardium, was used. As
a binary segmentation is needed in this challenge, we chose the threshold such
that resulting probabilities were optimal on the training set using a brute force
optimization approach. No re-flow areas are detected by morphological closing
because we assume that they are surrounded by blood-pool and/or enhanced
fibrotic tissue.

3 Results

We evaluated all models based on the metrics provided for the challenge.
For the myocardial region the DICE index, Hausdorff distance, and vol-

ume difference are calculated. For infarcted tissue and micro-vascular obstruc-
tions the DICE index, volume difference, and volume difference ratio,
according to the myocardium, are used.

For the pure CNN based approaches, we used 5-fold cross-validation during
our experiments.

Table 1 gives an extensive overview of the conducted experiments’ metrics
on the internal validation. The CNN for the hybrid mixture model shows su-
perior DICE-values on the myocardium (see figure 2). Notably, the mixture of
Rayleigh and Gaussian fails to accurately infer a segmentation on the no-reflow
areas within the myocardial tissue. Remarkable is the results of the randomly
initialized models, which produces the top performance in the no-reflow area.

Again the mixture model of Rayleigh and Gaussian demonstrates preferable
results on the Hausdorff distance (2). With a 9.3 ± 5.4 mm distance to the
ground-truth surface, the results are considerably exceeding the performance of
the other tested methods. Moreover, the margin of error is explicitly lower with
even fewer outliers compared to the transfer-learning and randomly initialized
method.

Table 2 shows the final result of the different approaches on the test set. The
performance of the CNN based approaches showed a better performance on the
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Fig. 2: An illustration of the models results. Left: DICE index for the my-
ocardium infarction and no re-flow area. For the myocardium and the no re-flow
areas, value zero and one in the box plots result from cases, in which i.e. regions
bright regions were classified as infarct in healthy subjects. Right: Hausdorff dis-
tance for the different segmentation approaches. The CNN that was only trained
to segment the myocardium, and was also trained on additional DE-MRI data
as well as on cine MRI data, outperformed the CNN approaches that also tried
to detect infarcted tissue.

Fig. 3: Left: illustration of the volume difference between proposed methods and
the ground truth. For the myocardium, the mixture model approach achieved
the best results. In the infarction and the micro-vascular obstruction, the three
approaches achieved similar results. Right: illustration of the volume difference
ratio of infarction and micro-vascular obstructions in relation to the complete
myocardial volume.
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Metric MM-RG Transfer-learning EMIDEC

Dice myocardium (%) 84.8 84.08 82.95
Volume difference myocardium (mm3) 12582.76 10874.47 9060.61
Hausdorff myocardium (mm) 15.93 18.3 16.16
Dice MI (%) 35.83 37.87 37.33
Volume difference MI (mm3) 6100.92 6166.01 6021.72
MI volume difference ratio (%) 5.17 4.93 4.87
Dice no-reflow (%) 41.25 52.25 48.39
Volume difference no-reflow (mm3) 1090.04 953.47 990.29
No-reflow volume difference ratio (%) 0.76 0.64 0.64

Table 2: Quantitative comparison of the final results on testing set.

test set compared to the internal tests. The drop of performance of the mixture
model results come from the fact, that we did not perform a cross validation
and used the final model to generate the myocardium segmentation. However,
the performance of the myocardium segmentation by this method still achieved
the best results for DICE index and Hausdorff distance.

4 Discussion

We have demonstrated three different approaches to segment the myocardium,
infarcted tissue, and micro-vascular obstructions from DE-MRI data. For pure
CNN based segmentation approaches, the results on the actual testing set were
better than in our internal evaluation using 5-fold cross-validation. As we re-
trained our models for the submission using all data, we think that the im-
provement comes from the additional cases. The slightly better results for the
transfer learning approach also back this hypothesis. The u-net that was addi-
tionally trained on cine data showed the best results in the segmentation of the
myocardium according to the dice index and Hausdorff distance. This could also
be due to the better generalization by the additional data sets. The improvement
could also come from the reduction of the number of classes to be classified. The
drop in the performance of the results by the hybrid approach can be explained
by using the final CNN to extract the myocardial segmentation. Here we can
see that the quality of the segmentation of the infarction and no-reflow areas is
highly dependent on a robust segmentation of the myocardium.

Figure 5 shows several segmentation results. In the top row, healthy tissue is
segmented correctly by all approaches. Row two shows an example of infarction
with no re-flow area that was also correctly depicted by all methods and shows
a good agreement with the ground truth. In row three, both pure CNN based
approaches miss-classified brighter regions in the basal slices as infarction. In
row four, an example is provided, where the mixture model approach could not
correctly segment the no re-flow area.
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We saw in several cases that the segmentation of the infarction was under-
estimated by the mixture model approach and the no-reflow areas were not sur-
rounded by the infarction mask. Thus the no-reflow areas could not be segmented
using simple morphological closing operations. Here one could try using radial
closing approaches to try to overcome this limitation. To reduce the number of
cases without infarction in which voxels were misclassified as infarcted tissue,
one could additionally analyze the fitted distributions. One could i.e. analyze if
the mean of the distributions is to close together.

In future work, it makes sense to investigate the performance of 2-step u-
net approaches, also incorporating the results of our mixture model analysis. To
achieve better results for the smaller regions infarction and no-reflow areas we
could try to use weighted categorical cross-entropy as a loss function. Addition-
ally, we could try if self-learning on the test set can further improve the overall
performance of the proposed method.

Fig. 4: Example results from the training data set. Each row shows a case on
different locations in the heart. On the left, the original image is shown (A),
followed by the ground truth (B), transfer learning (C), EMIDEC training (D)
and the Mixture model of Rayleigh and Gaussian distribution on the right (E).
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