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Abstract. Cardiovascular diseases are the top cause of death world-
wide. Commonly, physicians screen suspected pathological patients with
histological examinations and blood tests. Since these clinical parame-
ters are frequently ambiguous, they are routinely extended by delayed-
enhancement magnetic resonance imaging of the myocardium.
We propose a method combining deep learning and classical machine
learning to differentiate between pathological and normal cases. A con-
volutional neural network infers a segmentation of the left myocardium
from a magnetic resonance image as a preliminary step. This segmen-
tation is employed to determine radiomics-based features describing the
morphology and texture of the myocardium. Subsequently, a multilayer
perceptron deduces pathological cases from these radiomics features and
clinical observations. The presented method demonstrates an accuracy
of 0.96 and an F2-score of 0.98 on a nested cross-validation.
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1 Introduction

Cardiac diseases, including myocardial infarction, are the world’s leading cause
of death [1] with approximately 31.9 %. Therefore, it is highly desirable to detect
heart diseases early and decide about the appropriate therapy.

The diagnosis of myocardial infarction and myocarditis can be based on his-
tological examinations [2] and blood tests. Proteins like troponin, N-terminal pro
b-type natriuretic peptide (NTproBNP), and myoglobin have shown to be very
reliable indicators for pathological cases [3–6]. Clinical and patient demographic
parameters are sometimes ambiguous and routinely extended with delayed en-
hancement magnetic resonance imaging (DE-MRI). DE-MRI image data enable
the assessment of anatomy and contrast agent accumulation patterns, which are
indicators for pathological alterations of the heart muscle tissue [7].

Shape-based modeling has been shown to produce decisive factors to detect
heart diseases in cine MRI [8,9], due to the structural change of the myocardium.
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Radiomics has proven to be a very promising toolkit for medical image process-
ing, analysis, and interpretation. It derives vast amounts of features from imaged
structures describing patterns in morphology and texture that are usually hard
to differentiate with the bare eye. Initially, radiomics has been employed for on-
cological applications but is an emerging technique in the cardiovascular field,
especially with MRI. This observation has been confirmed by studies [10–13],
which are extracting shape-based radiomics features and classifying diverse heart
diseases.

There is an apparent lack of the usage of features describing the texture of
imaged structures in the published methods. Due to highlighted myocardial in-
farction areas in DE-MRI, we hypothesize that features derived from the gray
level co-occurrence matrix introduce valuable information to analyze pathologi-
cal cases. These parameters are used along with the clinical, demographic, and
shape-based parameters to distinguish normal from pathological cases for the
EMIDEC classification contest [14].

2 Method and materials

2.1 Dataset

The EMIDEC dataset [14] consists of 150 cases in total, 100 for model training
and 50 for model testing. Each observation includes a DE-MRI acquisition of the
LV, covering the base to the apex. The training set with ground-truth segmen-
tation of the LV myocardium is comprised of 100 cases (67 pathological cases, 33
normal cases). The testing includes 50 subjects (33 pathological cases, 17 normal
cases), all different from those in the training set. The imbalance of normal to
pathological cases roughly corresponds to real life managed exams. Along with
the MRI, clinical parameters were provided: sex, age, tobacco (yes, no, and
former), overweight (BMI over 25), arterial hypertension, diabetes, fam-
ily history of coronary artery disease, ECG, killip max 5, troponin 6,
ejection fraction (LV), and NTproBNP 7.

2.2 Method

Our proposed method consists of three major steps (1) LV segmentation, (2)
radiomics feature extraction, (3) classification based on the features from the
previous step plus the clinical parameters provided with the contest. For the LV
segmentation we utilize a 2D U-Net variation proposed by Hüllebrand et al. [15],
which was pre-trained on the ACDC dataset [16].

5 a parameter based on a physical assessment, quantifying the risk of mortality
6 a protein released in large quantities in the event of damage to the heart muscle cells
7 a protein released in large quantities when the heart needs to work harder
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After the segmentation of the LV, we extract radiomics features based on the
LV shape and texture. The MRI can be used as direct input to a classification via
a CNN or similar architectures, but since the MRI is a very high dimensional
input, it is hard to train and prone to overfit if not parameterized correctly.
Therefore, we argue that using a lower-dimensional input, by deriving radiomics
features, produces a more reliable classification of normal and pathological cases.
Generally, radiomics features can be grouped into morphological and textural
descriptors. They can be further divided into the following seven categories:

1. First Order, describes the voxel intensity distribution within a masked
region.

2. Shape (3D), describes the overall size and shape of a structure. This in-
cludes volume, surface area, sphericity, etc.

3. Gray Level Co-occurrence Matrix (GLCM), describes the second-
order joint probability function of an image region. This includes cluster
tendency, cluster shape, contrast, etc.

4. Gray Level Size Zone Matrix (GLSZM) quantifies the gray level zones,
which is defined as the number of connected voxels that share the same
intensity. This includes gray level variance, zone entropy, zone variance, etc.

5. Gray Level Run Length Matrix (GLRLM) describes the length in
several consecutive voxels that share the same intensity. This includes run
percentage, run variance, run entropy, etc.

6. Neighbouring Gray Tone Difference Matrix (NGTDM) describes the
difference between the intensity and the average intensity of its neighbors.
This includes coarseness, contrast, busyness etc.

7. Gray Level Dependence Matrix (GLDM) describes the intensity de-
pendency, which is defined as the number of connected voxels within a dis-
tance δ that depend on the center voxel. This includes dependence entropy,
dependence variance, dependence non-uniformity, etc.

Shape-based features have shown to be useful for the classification of patho-
logical cases in cine echocardiography and MRI [8–13]. We hypothesize that due
to the injected contrast agent in DE-MRI, highlighted infarction areas can be de-
scribed by the radiomics texture features as shown in similar approaches for T1-
and T2-mapping [17,18]. The extracted radiomics features result in 108 variables
for the LV, plus 12 clinical parameters per patient, summing up to 120 features.
Due to this high dimensional input combined with only 100 patient observations,
we propose an 8-fold nested cross-validation (CV) to select relevant radiomics
feature classes. Moreover, during the CV, we perform a model selection of five
classifiers and their respective hyperparameters, which are illustrated in table 1.

Support vector machines (SVM) are particularly effective in high dimensional
spaces with a clear margin between the classes and have shown to work well on
pathological case detection by Cetin et al. [10]. Random forests are very robust
to outliers and comparatively little impacted by noise. They have shown to be
effective in medical settings, as illustrated by [11–13]. Multilayer perceptrons
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Model name Hyperparameters

Support vector machine
C: 0.01, 0.05, 0.1, 1, 10, 100, 1000
kernel: linear, poly, rbf, sigmoid
gamma: auto, scale

Random forest

n estimators: 100, 200, 300, 500
max depth: 90, 100, 110
max features: 2, 3
min samples leaf: 3, 4, 5

Gradient Boosting

loss: deviance, exponential
n estimators: 10, 20, 50
max depth: 3, 5
max features: log2, sqrt
criterion’: friedman mse, mae

Multilayer perceptron
hidden layer sizes: (100,), (100, 50), (50,), (50, 25)
max iter: 200, 300, 500, 700, 1000

K-nearest neighbors
n neighbors: 1, 3, 5, 10
weights: uniform, distance

Table 1: Five models and their respective hyperparameters used during the 8-fold
nested cross-validation.

(MLP) have been thoroughly studied, and Isensee et al. [13] have illustrated
that they can be successfully applied for pathological case detection. Gradient
boosting is one of many ensemble methods, which utilizes a collection of weakly
trained classifiers. It has been shown to be useful in individual treatment estima-
tions [19]. The K-nearest neighbors (KNN) algorithm does not need any training,
and therefore new data can be seamlessly added. Akhil [20] has demonstrated
medical applicability by predicting various heart diseases.

3 Results

We used an 8-fold CV during all experiments, performed on an Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz with 16 GBs RAM. Since the contest is evaluated on
the predictions’ accuracy, we evaluate all models based on this metric. However,
we argue that a false-negative classification is more harmful to the screening
process, and since the dataset is imbalanced, we additionally evaluate the F2-
score for each model. Where the F2-score combines sensitivity and precision and
considers sensitivity twice as important as precision.

The first experiment we conducted was only using the clinical parameters
to train the models described in table 1. The results of this analysis are illus-
trated in figure 1. Based on the accuracy score, the random forest is the best
performing metric with 0.89 ± 0.10, closely followed by the KNN with 0.86 ±
0.14. When taking the F2-score into account, the random forest with 0.93 ± 0.08
is considered the best choice, followed by the MLP with 0.92 ± 0.06.
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Fig. 1: An illustration of the models accuracy and F2-score produced by an 8-
fold nested cross-validation. All models tested on clinical, shape, GLCM, shape
+ GLCM, and clinical + shape + GLCM.

In the next setup, we experimented with sole shape, GLCM, and shape+GLCM
features. The results of this procedure are illustrated in figure 1. We observed
similar accuracy compared to the clinical features when only taking the GLCM
features into account. The best performing model (MLP) trained on the GLCM
variables achieves an accuracy of 0.88 ± 0.07 and an F2-score of 0.92 ± 0.08.
After combining the shape and GLCM features, the best performing model im-
proves to 0.93 ± 0.05 and an F2-score of 0.94 ± 0.07.

Due to the improved accuracy with models trained on the shape and GLCM
features, we combined them with the clinical observations. Clinical, morpho-
logical, and textural features sum up to 50 variables. We assume the number
of features can be further compressed and subsequently improve the models’
predictive power. Consequently, we performed a feature importance analysis as
proposed by Breiman [21]. This analysis can be performed on any fitted model
by calculating a base score produced by the model on the training or test set.
This is followed by a random shuffle to one of the features and compared to the
baseline’s predictive power. This procedure is then repeated and applied to all
features to come up with an importance score. Collinear features in the input
result in lower importance scores when permuted. This can be counteracted by
clustering highly correlated features and keeping only one feature per cluster.

To estimate the effect of a not perfectly segmented myocardium, we con-
ducted experiments with different levels of structural changes to the myocardium
segmentation. We performed contour distortions utilizing increasing degrees of
random affine and elastic deformations [22]. An overview of the changes is il-
lustrated in table 2. By introducing a light structural change to the myocardial
segmentation, the accuracy of the trained model stays constant (see figure 3).
After increasing the distortion, we observed a drop in the models’ performance
to 0.93. The deformed myocardium shows a dice coefficient of 0.92 and a Haus-
dorff distance of 1.4 mm. Further decreasing the dice coefficient to 0.87 showed
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Fig. 2: The feature importance scores on the finally trained MLP, where the
importance is defined by the difference of the models’ baseline and the score
after a feature permutation.

similar accuracy, only after decreasing the dice to 0.75 with a Hausdorff distance
of 4.3 mm shrinks the models’ predictive capability to 0.87.

Fig. 3: An illustration of different levels of distortions performed to the my-
ocardium segmentation. Left: highlights the change of performance with increas-
ing levels of deformations. Center: illustrates the dice coefficient of the original
myocardium segmentation and the deformed one. Right: shows the Hausdorff
distance of the original myocardium segmentation the the distorted structure in
mm.

Finally, we cross-validate an MLP with optimal hyperparameters obtained in
the previous experiments. The model includes one hidden layer with 100 neurons
and the ReLU activation function. The network was trained with Adam (with
standard parameters) and a learning rate of 0.001 for 500 iterations. This CV
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Name Structural changes

Mask Transformation 1 Random affine transformation with scaling [0.97, 1.03]

Mask Transformation 2
Random elastic deformation with (7, 7, 5) control points and
(3, 3, 1) maximum displacement.

Mask Transformation 3
Random elastic deformation with (7, 7, 5) control points and
(5, 5, 1) maximum displacement.

Mask Transformation 4
Random elastic deformation with (15, 15, 5) control points and
(10, 10, 1) maximum displacement.

Table 2: The four levels of the distortion we performed on the myocardium
segmentation. The deformations are illustrated in increasing strength.

results in a network with an accuracy of 0.96 ± 0.05 and an F2-score of 0.98
± 0.04. The feature importance scores of this model are illustrated in figure 2.
This analysis shows very high importance for most clinical variables, followed
by some GLCM and morphological features. For the clinical integration of the
proposed method, we utilized LIME [23], which is an explanatory framework for
any black-box classifier.

4 Discussion and Conclusion

We have illustrated a pathological classification pipeline, with comparable ac-
curacy scores to state-of-the-art solutions. While clinical parameters provide an
excellent baseline to distinguish normal from pathological cases, this can be fur-
ther improved by including morphological and textural features extracted from
DE-MRI. Our proposed method includes an automatic segmentation of the LV,
an extraction of large amounts of morphological and textural radiomics features
followed by classification into normal and pathological cases. A nested CV was
performed to deal with the high dimensional data produced by the radiomics fea-
ture extraction. During this process, an optimal model from a pool of classifiers
and hyperparameters was chosen. Moreover, the input space was further reduced
by clustering highly correlated features, resulting in 27 clinical and MRI-based
features. These features were ranked according to the final models’ importance
for clinical interpretation. The final MLP achieves an accuracy score of 0.96 and
an F2-score of 0.98 on the performed nested cross-validation. We hypothesize
that the utilization of GLCM features derived from DE-MRI enables the differ-
entiation between categories of pathological cases like myocardial infarction and
myocarditis. Furthermore, we illustrated the generalization capability of the pro-
posed method by introducing distortion of the myocardium segmentation. The
model exhibits invariance in performance on small to medium imperfections of
the segmentation. On more intense structural changes, the model still illustrates
an accuracy of 0.87 (see figure 3).

Interestingly, the importance of the Killip and diabetes observations are al-
most irrelevant to the combined model as shown in figure 2. A potential expla-
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Fig. 4: Left: an illustration of pathological cases grouped by the patients’ sex.
Center: an overview of pathological cases grouped by the Killip parameter.
Right: a plot of pathological cases grouped by diabetes.

nation for this phenomenon is illustrated in figure 4. The diabetes distribution of
pathological and normal cases does not show any significant difference. Moreover,
the Killip classes one and two do not seem to be good predictors for patholog-
ical cases, since they mostly emerge in this class. Only classes three and four
seem to be useful for predicting pathological cases, although these classes’ fre-
quency seems negligible. Notable is the high importance of the patients’ sex to
the prediction of pathological cases. This observation can be explained by the
vast difference of men with myocardial infarction or myocarditis showing up to
the emergency room compared to women. Finally, the proposed method’s prob-
able advancement is training with randomly elastically deformed segmentations
of the myocardium, which should help the model to a superior generalization.
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